Основы вариационного исчисления. Том первый. Часть II - Люстерник Л.А., Лаврентьев М.А.
Люстерник Л.А., Лаврентьев М.А.

Основы вариационного исчисления. Том первый. Часть II

Автор Люстерник Л.А. Лаврентьев М.А.
Издательство ОНТИ
Год 1935
Формат DJVU


Рейтинг книги
0.00
(оценок < 5)
0 10

Первая часть „Основ вариационных исчислений", посвященная функциям конечного числа переменных и их экстремумам, вышла отдельной книжкой. Настоящая книга, II—IV части, содержит несколько расширенный университетский курс. Мы начинаем ее с „Основных понятий и методов вариационного исчисления". На этой части (II) мы сознательно остановились более подробно, так как, с одной стороны, эти понятия имеют фундаментальное значение в анализе вообще; с другой стороны, овладение основными понятиями и методами математической дисциплины не менее важно, чем овладение ее рецептурой.

Начало II части естественно примыкает к I части: вариационные задачи здесь рассматриваются как предельные задачи на экстремум функций конечного числа переменных. Сначала решаются отдельные частные вариационные задачи, затем делается переход к решению общей задачи. Подобные элементарные методы (конечно в другом изложении — инфинитезимальном) были характерны для первого развития вариационного исчисления. Но и после создания более общих формализированных методов элементарные приемы могут иметь преимущество при решении отдельных задач.

Теорию функции конечного числа переменных мы начинали с n-мерной геометрии, рассматривая функции многих переменных как функции точки в n-мерных пространствах. Вариационное исчисление расширяет понятие функции. Современная геометрия соответственным образом обобщает основные геометрические понятия. В главе VI (и в начале главы VII) мы приводим элементы абстрактной геометрии. Вариационное исчисление с точки зрения современной математики есть дифференциальное исчисление для функций более общей природы, развертывающейся на пространствах более общей природы.

Часть III изучает основные классические вариационные задачи с точки зрения необходимых условий.

Глава XIII части IV содержит теорию второй вариации для простейшей и изопериметрической задачи. С нею связаны дифференциальные уравнения Штурма-Лиувилля. Наряду с теорией слабого экстремума и сопряженных точек, в ней приводится экстремальная теория собственных значений Куранта. В "ней же иллюстрируется предельный переход от функции конечного числа переменных к функционалам.

Глава XiV содержит излагаемую в геометрической форме теорию поля и достаточные условия Вейерштрасса.